
New Package for RooFit Supporting Dalitz
Analysis: RooAmplitudes

Grace Young
CERN openlab summer student 2011

gcyoung@mit.edu

Contents

1 Project Overview 3
1.1 Background . 3

1.1.1 ROOT . 3
1.1.2 The RooFit Library 3
1.1.3 Invariant Mass Distributions and Dalitz Plots in Physics 3

1.2 Project Objectives . 4

2 Real and Complex Numbers in RooFit and RooAmplitudes 5

3 Invariant Mass Distributions 6
3.1 Non-Relativistic Breit-Wigner Distribution 6

3.1.1 Physical Significance 6
3.1.2 Mathematical Description 7
3.1.3 Existing Function in ROOT: RooBreitWigner 8
3.1.4 Implementation Using RooBrietWignerAmplitude . . 8

3.2 Relativistic Breit-Wigner Distribution 9
3.2.1 Physical Significance 9
3.2.2 Mathematical Description 9
3.2.3 Implementation Using RooRelBreitWignerAmplitude . 11

4 Dalitz Analysis 11
4.1 Basic Description . 11
4.2 Two-Dimensional Amplitudes 12

4.2.1 Mathematical Description 12
4.2.2 Implementation Using RooAngular Classes 15

4.3 Existing Software for Dalitz Analysis 15

5 Complete Class Structure of RooAmplitudes 15

6 Community of Users 15

A Worked Examples 18
A.1 Creating a Dalitz Plot . 18
A.2 Defining RooBreitWigner . 20
A.3 Using RooAmplitudePdf to Create a Probability Distribution

from RooBreitWignerAmplitude 20

1

B Descriptions of Constructors 21
B.1 RooRelBreitWignerAmplitude without Dalitz Analysis . . . 21
B.2 RooPhaseSpace . 22
B.3 RooRelBreitWignerAmplitude with Dalitz Analysis 22
B.4 RooAngularDistribution . 23
B.5 RooAngularAmplitude . 23

2

1 Project Overview

1.1 Background

1.1.1 ROOT

ROOT is a C++ based framework for handling and analysing data. It was
specifically developed by CERN physicists to analyse data from high-energy
physics experiments. First released in 1995, the software continues expand-
ing to meet the needs of modern experiments, which generate hundreds of
Terabytes of data monthly. Built from over 2,500 classes and 3,000,000 lines
of code, ROOT includes extensive methods for 2D and 3D visualization,
data fitting, threading, sharing memory, networking, and more. It is an open
source software, available under the LGPL license. Over 600,000 binaries
have been downloaded since 1997, and the estimated user base is currently
20,000 people [1]. ROOT interprets data from all high energy physics ex-
periments in the world, as well as from other scientific fields and commercial
industries [1].

1.1.2 The RooFit Library

ROOT includes about 100 shared libraries. One of the most popular libraries
is RooFit, which provides tools for statistically analysing data. RooFit is es-
pecially useful in high-energy physics for modelling the expected distributions
of events, preforming likelihood fits, producing plots, and running other sta-
tistical tests. A major objective of this project is to add functionality to
RooFit.

1.1.3 Invariant Mass Distributions and Dalitz Plots in Physics

A particularly important and very common application of the RooFit library
is to analyse invariant mass distributions. Dalitz analysis is closely related
to this type of analysis, but is currently not well supported in RooFit. A
major objective of this project is to provide an extention to RooFit to aid
Dalitz analysis.

Briefly, invariant mass is a number that contains information about the
energy and momentum of a particle; it is measured in units of energy over
the speed of light squared. Particle detectors at CERN and other institu-
tions measure the invariant masses of particles, and results are displayed in

3

Figure 1: Example invariant mass distribution for a particle that decays into
µ+ and µ− particles [2]. The peaks in the graph indicate unstable particles,
or resonances, associated with the decay.

histograms that show particles’ invariant mass distributions.
An invariant mass distribution for a single resonance is usually a bell-

shaped curve; it can be modelled by a probability function, most commonly
either a Gaussian or Briet-Wigner (discussed in Section 3). A plot of the
distribution marks invariant mass on the horizontal axis and the number of
times a particle is observed on the vertical axis. Figure 1 contains an example
invariant mass distribution for a system of particles.

A Dalitz plot conveys more information about particles than an invariant
mass distribution plot; it is essentially a 2-dimensional invariant mass distri-
bution plot that is also able to reveal information about the quantum states
of intermediate decays of a particle. It is used specifically to convey infor-
mation about the decay of a spin-0 particle into three other spin-0 particles.
Both the horizontal and vertical axes of a Dalitz plot have units of invariant
mass squared. Figure 2 contains example Dalitz plots, which are described
in more detail in Section 4.

1.2 Project Objectives

The first goal of this project is to create working, readable, and well docu-
mented classes in C++ that can be implemented as extensions of the RooFit

4

Figure 2: Example Dalitz plots for the decays p̄p→ π0π0π0 [3] (a) and D+
s →

K+K−π+ [4] (b). Note both the horizontal and vertical axes have units of
invariant mass squared. Warm colors on graph (a), and black on graph (b),
indicate many observed particles at that mass. The rounded-triangle shape of
the plot, or phase space, is defined by kinematics of the system, as discussed
in Section 4.1.

library to provide support for complex-valued amplitudes, particularly Breit-
Wigner amplitudes, and also to provide functions useful for Dalitz analysis.
The code generated for this project will not be integrated into RooFit by the
end of eight-week time frame for the project. The second goal, therefore, is
to create a plan for how scientists will access the code and benefit from its
features. Accomplishing the second goal involves establishing a community
of developers who will implement and maintain the code.

2 Real and Complex Numbers in RooFit and

RooAmplitudes

RooAmplitudes, the RooFit extension being developed for this project, con-
tains support for complex-valued amplitudes and other features of Dalitz
analysis. The backbone of RooAmplitudes is a set of classes that mirror exist-
ing classes in RooFit for handling real numbers and probability distributions.
Figure 3 shows RooFit classes and their counterparts in RooAmplitudes.

5

Figure 3: UML diagram showing the symmetry in the existing classes for
real numbers (in black) and the new classes in RooAmplitudes for complex
numbers (in green).

In addition, there are two classes in RooAmplitudes that convert com-
plex numbers into real numbers and vice versa; both are shown in Figure
4. RooReal2Complex converts real variables into complex variables with zero
imaginary component, and RooAmplitudePdf converts a complex-valued am-
plitude into a probability distribution.

3 Invariant Mass Distributions

3.1 Non-Relativistic Breit-Wigner Distribution

3.1.1 Physical Significance

The non-relativistic Breit-Wigner distribution, also known as the Cauchy
distribution [5], is the simplest version of the Breit-Wigner distribution. It
describes the invariant mass distribution of an unstable particle, or resonance,
travelling at non-relativistic speeds as predicted by theory [6]. In other words,
the Breit-Wigner distribution models a resonance, meaning it predicts how
many times a particle is expected to be observed as a certain mass.

6

Figure 4: New classes for converting complex objects into real ob-
jects. RooReal2Complex converts a complex number into a real number.
RooAmplitudePdf converts an amplitude into a probability distribution.

3.1.2 Mathematical Description

The amplitude ABW of the non-relativistic Breit-Wigner distribution for a
resonance of invariant mass m is given by [5]

ABW(m) =
1

(m−m0)− iΓ/2
, (1)

where m0 is the central mass of the resonance and Γ its width, where Γ is
inversely proportional to the lifetime of the particle assuming the reduced
Planck’s constant h̄ = 1.

Alternatively, we can write formula 1 using polar coordinates:

ABW(m) = |ABW(m)|eiφ, (2)

where φ is the phase of the resonance.
A probability distribution is the module square of the amplitude; the

Breit-Wigner distribution is therefore given by

|ABW(m)|2 =
1

(m−m0)2 + (Γ/2)2
(3)

A plot of an example Breit-Wigner distribution compared to a Gaussian
distribution is shown in Figure 5.

7

Figure 5: Example Breit-Wigner distribution (solid line) compared to a
Gaussian distribution (dashed line). Both distributions have central mass
m0 = 50MeV and width Γ = 5MeV .

3.1.3 Existing Function in ROOT: RooBreitWigner

The non-relativistic Breit-Wigner distribution is implemented in RooFit by
an existing class RooBreitWigner, shown in the UML diagram in Figure 6.

Like all classes for probability distribution functions (PDFs), RooBreit-
Wigner inherits from the abstract class RooAbsPdf. It has a public method
getVal() which returns the normalized value of the PDF, meaning the value
when the area under the probability curve is set to one. PDFs in RooFit also
have a protected pure virtual method evaluate(), which is overloaded in the
corresponding daughter class and calculates the value of the PDF that is re-
turned by getVal(). It is currently not possible to return the complex-valued
amplitude of distributions, which becomes a problem when combining am-
plitudes or preforming Dalitz Analysis, as discussed in Section 4. Appendix
A.2 contains example code for defining a Breit-Wigner distribution using
RooBreitWigner.

3.1.4 Implementation Using RooBrietWignerAmplitude

In the RooFit extension being developed for this project, RooAmplitudes,
the non-relativistic Breit-Wigner distribution will be implemented by a class
RooBreitWignerAmplitude. The class will inherit from an abstract class

8

Figure 6: Existing classes in RooFit surrounding RooBreitWigner. The
public method getVal() returns the normalized value of the Breit-Wigner
function, so externally it is impossible to access the complex-valued ampli-
tude of the function.

RooAbsAmplitude and have a method evaluate() that returns the complex-
valued amplitude of the distribution (equation 1). The amplitude can be con-
verted into a probability distribution by the class RooAmplitudePdf. Figure
7 shows the classes surrounding RooBreitWignerAmplitude, and Appendix
A.3 contains an example on how to use the class.

3.2 Relativistic Breit-Wigner Distribution

3.2.1 Physical Significance

The relativistic Breit-Wigner commonly models the invariant mass distri-
bution of an unstable particle travelling at relativistic speeds, as predicted
by theory [6]. It is more commonly used in particle physics than the non-
relativistic Breit-Wigner.

3.2.2 Mathematical Description

The amplitude ABWrel
of the relativistic Breit-Wigner distribution for a par-

ticle of invariant mass m an mean mass m0 is given by

ABWrel
=

B

m2
0 −m2 − im0Γ

. (4)

Descriptions of the parameters are given in Table 1, and B, the Blatt-
Weisskopf factor, is given in Table 2. Γ is the mass-dependent width of
the mother particle, given by [7]:

9

Figure 7: UML diagram for the classes related to RooBreitWignerAmplitude

and RooRelBreitWignerAmplitude. The classes in black are existing in
RooFit, and the green classes are part of the new package RooAmplitudes.
The class RooAmplitudePdf converts probability amplitudes, such as
RooBreitWignerAmplitude objects, into probability distribution functions.
The existing class RooBreitWigner (also shown in Figure 6), is given for
reference.

parameter description
m mass
m0 mass resonance
l spin
R constant (Barrier factor)
m1 daughter mass
m2 daughter mass
Γ0 resonant width

Table 1: Parameters used in equations 4, 5, and 6 to calculate the amplitude
of the relativistic Breit-Wigner distribution for a resonance decaying into two
daughter particles. The default value of R is 3 GeV −1, as in reference [4].

10

l B
0 1

1
√

1+R2q20
1+R2q2

2
√

(R2q20−3)2+9R2q20
(R2q2−3)2+9R2q2

Table 2: Blatt-Weisskopf factors [6] used in equations 4 and 5 to calculate
the amplitude of the relativistic Breit-Wigner distribution; the parameter R
is described in Table 1, and q and q0 are given in equation 6.

Γ = Γ0

(
q

q0

)2l+1 (m0

m

)
B2. (5)

In the case of the particle decaying into two daughter particles of masses
m1 and m2, the value q in the equations for Γ and B is given by [6]:

q =

√
[m2 − (m1 +m2)2][m2 − (m1 −m2)2]

2m
(6)

and for q0, m is fixed to m0 in the above formula.

3.2.3 Implementation Using RooRelBreitWignerAmplitude

Currently RooFit does not provide support for the relativistic Breit-Wigner
function. This function will be supported in the extension RooAmplitudes,
however, primarily by the class RooRelBreitWignerAmplitude, shown in the
UML diagram in Figure 7. Like all probability amplitudes in the new pack-
age, it inherits from RooAbsAmplitude and contains an evaluate() method.
The amplitude can be converted into a probability distribution function by
the class RooAmplitudePdf. Appendix B.3 contains descriptions of the main
constructors for RooRelBreitWignerAmplitude.

4 Dalitz Analysis

4.1 Basic Description

Dalitz analysis reveals information about the decay of a spin-0 particle into
three other spin-0 particles (i.e., three-body decay). The method is based

11

upon the Dalitz plot, described in Section 1.1.3, which conveys information
about the invariant masses and quantum states of resonances associated with
the decay. Example plots are given in Figure 2 of Section 1.1.3.

The rules of kinematics constrain the plot area, giving it the shape of a
rounded-triangle known as the phase space. Figure 8 shows the boundaries
of a phase space for a decay of a mother particle of mass M into daughter
particles of masses m1,m2, and m3. The invariant mass obtained from the
first and and second daughter particles is m12, and the invariant mass ob-
tained from the second and third particles is m23. The invariant mass m13

can be calculated from the other masses involved in the decay:

m2
13 = M2 +m2

1 +m2
2 +m2

3 −m2
12 −m2

23. (7)

The variables m2
12 and m2

23 are on the axes of the Dalitz plot, and the bound-
ary formulas referenced in Figure 8 are:

(m2
23)max = (E2 + E3)

2 −
(√

E2
2 −m2

2 −
√
E2

3 −m2
3

)2

(8)

(m2
23)min = (E2 + E3)

2 −
(√

E2
2 −m2

2 +
√
E2

3 −m2
3

)2

, (9)

where E2 = (m2
12−m2

1 +m2
2)/(2m12) and E3 = (M2−m2

12−m2
3)/(2m12) are

the energies of masses m2 and m3 in the m12 rest frame [8].
The phase space is defined by the class RooPhaseSpace, which takes as

input m12, m23, M , m1, m2, m3, and R, as described in Appendix B.2.

4.2 Two-Dimensional Amplitudes

4.2.1 Mathematical Description

As mentioned previously, a Dalitz plot is essentially a 2-dimensional invariant
mass distribution plot. The amplitude of the distribution in a Dalitz plot is,
therefore, 2-dimensional. It is closely related, however, to the 1-dimensional
amplitudes commonly seen in invariant mass distributions, such as Gausian
or Breit-Wigner amplitudes.

Each resonance r in the decay has a 2-dimensional amplitude Ar. The
total 2-dimensional amplitude of the Dalitz plot is the sum of the amplitudes
for single resonances multiplied by complex coefficients cr:

12

Figure 8: Example Dalitz plot for the decay of a mother particle of mass M
into daughter particles of masses m1,m2, and m3 [8]. The rounded triangle-
shaped plotting region, or phase space, is defined by the kinematics of the
system. It has boundaries that depend on the masses involved in the decay,
as indicated in the figure. Equations 8 and 9 describe (m2

23)max and (m2
23)min.

A2D total =
∑
r

crAr(m
2
12,m

2
23), (10)

where Ar depends on the squared invariant masses m2
12 and m2

23. Ar is given
in equation 11 as the product of a mass term A, a Blatt-Weisskopf factor
Br, and an angular term T [4]. The resonance r can decay to the first and
second daughter particles, or the second and third daughter particles.

Ar(m
2
12,m

2
23) = A(m2

r)×Br(m
2
r)× T (m2

r,m
2
12,m

2
23), (11)

wheremr is the invariant mass, eitherm12 orm23 depending on the resonance.
The mass term A is the amplitude of a 1-dimensional probability distribution,
such as a Briet-Wigner amplitude (equations 2 and 4). The additional Blatt-

13

Figure 9: The classes in RooAmplitudes used to calculate 2-
dimensional amplitudes: RooAngularDistribution, RooAngularAmplitude,
and RooBlattWeisskopf. RooSpin is a class to hold the spin of the resonance.

Weisskopf factor Br is given in Table 2 of Section 3.2, where R is the constant
associated with the mother particle. In the formula for q (equation 6) m =
mr, m1 = M , and m2 is the mass of the other particle not involved in the
resonance (i.e., m3 if using mr = m12, and m1 if using mr = m23). The spin
used to calculate both A and Br is that of the resonance r.

The angular term T depends on the spin of the resonance and all masses
involved in the decay; it is given by the following equation for mr = m12.

T =


1, spin 0

m2
23 −m2

13 −
(M2−m2

3)(m
2
2−m2

1)

m2
12

, spin 1

a21 − 1
3
a2a3, spin 2

(12)

a1 = m2
23 −m2

13 +
(M2 −m2

3)(m
2
1 −m2

2)

m2
12

a2 = m2
12 − 2M2 − 2m2

3 +
(M2 −m2

3)
2

m2
12

a3 = m2
12 − 2m2

1 − 2m2
2 +

(m2
1 −m2

2)
2

m2
12

14

4.2.2 Implementation Using RooAngular Classes

In RooAmplitudes, three classes are involved in the computation of a 2-
dimensional amplitude; they are shown in the diagram in Figure 9.

A class RooAngularDistribution computes the angular term T using
equation 12. It does not need to accept the parameter m13 because it can
be calculated using equation 7. Another convenient property of the class
RooAngularDistribution is that it has a default constructor for the case
of spin-0; in this case it doesn’t need to accept the values of any of the
masses. Both constructors are described in Appendix B.4. Another class
RooBlattWeisskopf computes the Blatt-Weisskopf factor Br.

The class RooAngularAmplitude returns the final 2-dimensional ampli-
tude given by equation 11; it’s constructor is described in Appendix B.5.

4.3 Existing Software for Dalitz Analysis

There are a few existing software packages for Daltz Analysis. Most are
targeted towards a specific physical process; they are listed in reference [9].
Another software package is being developed by Dr. Jonas Rademacker at
LHCb called MintDalitz 1, which provides extensions for RooFit to aid Dalitz
analysis. This package provides many of the features of RooAmplitudes, but
is currently unfinished.

5 Complete Class Structure of RooAmplitudes

Figure 10 contains a complete diagram of the classes in RooAmplitudes,
which provides tools for basic Dalitz analysis within RooFit. An example
script for Dalitz analysis with two resonances using RooAmplitudes is given
in Appendix A.1.

6 Community of Users

RooAmplitudes is a complete package providing tools for basic Dalitz analy-
sis. It can be used as an extension of RooFit, but it is not yet available for the
public to download. There will be a meeting in September to discuss the code

1http://www.phy.bris.ac.uk/people/rademacker_j/documentation_html/

classes.html

15

Figure 10: UML diagram for classes in RooAmplitudes. Black classes
are existing in ROOT, and green classes are new classes included in the
RooAmplitudes package.

with potential users, and to compare results generated using RooAmplitudes

with results from other analysis programs. If the package gets a sizeable
number of users, it will be integrated permanently into RooFit.

References

[1] Jan Fiete Grosse-Oetringhaus, Introduction to ROOT, Summer Stu-
dent Lecture, July 11th, 2011. http://indico.cern.ch/getFile.py/
access?resId=1&materialId=slides&confId=134329

[2] Beautiful atoms. 6 September 2010. http://lhcb-public.web.cern.
ch/lhcb-public/

[3] T. Gershon, Introduction to Dalitz Plot Analysis. University of Warwick
(April 2011).

[4] BaBar Collaboration, Dalitz plot analysis of D+
s → K+K−π+. Physical

Review 83 (2011).

[5] Frederick James, Statistical Methods in Experimental Physics. World
Scientific Publishing Co. 2nd Edition (2006).

[6] D. Asner, Charm Dalitz Plot Analysis Formalism and Results (2003)

16

[7] D. Asner, Dalitz Plot Analysis Formalism. Pacific Northwest National
Laboratory (January 2006).

[8] K. Nakamura et al.,. Kinematics. Particle Data Group. (July 30, 2010).
http://pdg.lbl.gov/2011/reviews/rpp2011-rev-kinematics.pdf.

[9] Fernando Martinez-Vidal, Dalitz Analysis Fitting Tools Survey. (Novem-
ber 29, 2005) http://ific.uv.es/~martinee/DalitzTools.html

17

A Worked Examples

A.1 Creating a Dalitz Plot

This example uses many of the classes in RooAmplitudes to draw a Dalitz
plot. The output is shown in Figure 11. The data is taken directly from the
Particle Data Group via the TParticlePDG database. The same analysis was
preformed by the BaBar collaboration at CERN [4].

1 #include <iostream >

3 #include "TApplication.h"

#include "TROOT.h"

5 #include "TCanvas.h"

#include "RooRealVar.h"

7 #include "RooBreitWigner.h"

#include "RooAddPdf.h"

9 #include "RooPlot.h"

#include "TLegend.h"

11 #include "RooGlobalFunc.h"

#include "TH1.h"

13 #include "RooDataSet.h"

#include "TStyle.h"

15 #include "TPaletteAxis.h"

#include "RooNumIntConfig.h"

17

// Retrive particle informations

19 #include "TDatabasePDG.h"

#include "TParticlePDG.h"

21

// new classes

23 #include "RooBreitWignerAmplitude.h"

#include "RooRelBreitWignerAmplitude.h"

25 #include "RooAddAmplitude.h"

#include "RooAmplitudePdf.h"

27 #include "RooComplexVar.h"

#include "RooAngularDistribution.h"

29 #include "RooBlattWeisskopf.h"

#include "RooAngularAmplitude.h"

31 #include "RooPhaseSpace.h"

33

int main(int argc , char** argv)

35 {

gROOT ->SetStyle("Plain");

37 gStyle ->SetPalette (1);

39 // Declare an application to draw inside a compiled macro

TApplication app("app",&argc ,argv);

41

// Retrieve particle masses from the PDG

43 TParticlePDG *Ds = TDatabasePDG :: Instance ()->GetParticle("D_s+");

18

RooRealVar mDs("mDs","",Ds->Mass());

45 TParticlePDG *pi = TDatabasePDG :: Instance ()->GetParticle("pi+");

RooRealVar mpi("mpi","",pi->Mass());

47 TParticlePDG *kaon = TDatabasePDG :: Instance ()->GetParticle("K+");

RooRealVar mkaon("mkaon","",kaon ->Mass());

49

// Define Dalitz variables

51 RooRealVar m2KK("m2KK","" ,0.8 ,3.5);

RooRealVar m2KPi("m2KPi","" ,0.3,2.3);

53

// Define phase space

55 RooPhaseSpace phsp("phsp","Phase Space D_{s}^{+} -> K^{+} K^{-} #pi^{+}"←↩
,m2KK ,m2KPi ,mDs ,mkaon ,mkaon ,mpi ,5);

57 // Calculate angular term for angular amplitude

RooAngularDistribution angularSpin1AB("angularSpin1AB","",phsp.mass2AB ()←↩
,phsp ,1);

59 RooAngularDistribution angularSpin1BC("angularSpin1BC","",phsp.mass2BC ()←↩
,phsp ,1);

61 // Retrieve from PDG mass and width of each intermediate state , phi and ←↩
K*

TParticlePDG *phi = TDatabasePDG :: Instance ()->GetParticle("phi");

63 RooRealVar m0_phi("m0_phi","",phi ->Mass());

RooRealVar gamma_phi("gamma_phi","",phi ->Width());

65 TParticlePDG *kstar = TDatabasePDG :: Instance ()->GetParticle("K*0");

RooRealVar m0_kstar("m0_kstar","",kstar ->Mass());

67 RooRealVar gamma_kstar("gamma_kstar","",kstar ->Width ());

69 // Define relitivistic Breit -W amplitudes for phi and K*

RooRelBreitWignerAmplitude rbw_ampl_phi("rbw_ampl_phi","",phsp.mass2AB ()←↩
,m0_phi ,gamma_phi ,phsp ,1,3);

71 RooRelBreitWignerAmplitude rbw_ampl_kstar("rbw_ampl_kstar","",phsp.←↩
mass2BC (),m0_kstar ,gamma_kstar ,phsp ,1,3);

73 // Calculate the 2D amplitudes for phi and K*

RooAngularAmplitude phiAmplitude("phiAmplitude","",angularSpin1AB ,←↩
rbw_ampl_phi);

75 RooAngularAmplitude kstarAmplitude("kstarAmplitude","",angularSpin1BC ,←↩
rbw_ampl_kstar);

77 // Define coefficients for phi and K*

RooRealVar coeffPhi("coeffPhi","" ,0.2);

79 RooRealVar coeffKstar("coeffKstar","" ,0.2);

81 // Calculate the total 2D amplitude

RooAddAmplitude totalAmpl("totalAmpl","",RooArgList(phiAmplitude ,←↩
kstarAmplitude),RooArgList(coeffPhi ,coeffKstar));

83 RooAmplitudePdf model("model","Model",totalAmpl ,phsp);

85 // Configure graph

RooNumIntConfig customConfig (* RooAbsReal :: defaultIntegratorConfig ()) ;

87 customConfig.method1D ().setLabel("RooAdaptiveGaussKronrodIntegrator1D");

model.setIntegratorConfig(customConfig);

89 RooDataSet *data = model.generate(RooArgSet(phsp.mass2AB (),phsp.mass2BC←↩
()) ,10000);

data ->Print();

19

91 TH1* plotData = data ->createHistogram("plotData",phsp.mass2AB (),RooFit ::←↩
YVar(phsp.mass2BC ()));

plotData ->GetZaxis ()->SetTitleOffset (1.8);

93 TCanvas c3("c3",model.GetTitle () ,140 ,140 ,1500 ,600);

c3.Divide (3,1);

95

// Draw Dalitz plot

97 c3.cd(1);

gPad ->SetRightMargin (0.2);

99 phsp.Draw();

plotData ->Draw("same colz");

101

// Draw data and projection of Dalitz plot

103 c3.cd(2);

RooPlot *frame_m2KK = m2KK.frame ();

105 frame_m2KK ->SetTitle("Projection of m_{KK}^{2}");

data ->plotOn(frame_m2KK);

107 model.plotOn(frame_m2KK);

frame_m2KK ->Draw();

109

// Draw data and projection of Dalitz plot

111 c3.cd(3);

RooPlot *frame_m2KPi = m2KPi.frame();

113 frame_m2KPi ->SetTitle("Projection of m_{K#pi }^{2}");

data ->plotOn(frame_m2KPi);

115 model.plotOn(frame_m2KPi);

frame_m2KPi ->Draw();

117

app.Run();

119

return 0;

121

}

Listing 1: main.cxx

A.2 Defining RooBreitWigner

1 // define parameters

RooRealVar M("M","M" ,800,1100,"MeV/c^{2}"); // variable mass

3 RooRealVar m0("m0","" ,900,8,1200); // mean mass

RooRealVar gamma("gamma","" ,10,0,120); // width

5

// define Breit Wigner distribution

7 RooBreitWigner bw("bw","",M,m0 ,gamma);

A.3 Using RooAmplitudePdf to Create a Probability Dis-
tribution from RooBreitWignerAmplitude

20

Figure 11: Output from Worked Example

1 // define parameters

RooRealVar M("M","M" ,800,1100,"MeV/c^{2}"); // variable mass

3 RooRealVar m0("m0","" ,900,8,1200); // mean mass

RooRealVar gamma("gamma","" ,10,0,120); // width

5

// define Breit Wigner amplitude

7 RooBreitWignerAmplitude bw_amp("bw","",M,m0 ,gamma);

9 // convert the amplitude into a probability distribution function

RooAmplitudePdf bw("bw","",bw_amp);

B Descriptions of Constructors

B.1 RooRelBreitWignerAmplitude without Dalitz Anal-
ysis

The main constructor for RooRelBreitWignerAmplitude accepts the param-
eters of the Breit-Wigner function listed in Table 1, and an optional argu-
ment Bool t square, which indicates whether or not all the input masses
are squared.

1 // main ctor

RooRelBreitWignerAmplitude(const char *name , const char *title , RooAbsReal←↩
& _m, RooAbsReal& _m0 , RooAbsReal& _gamma , RooAbsReal& _mA , RooAbsReal←↩
& _mB , Int_t _spin , Bool_t _square = kFALSE , Double_t _R = 3) ;

21

Another constructor for RooRelBreitWignerAmplitude accepts all the
arguments of the main constructor (above), but allows the user to input only
one daughter mass for the case when both daughter particles have the same
mass.

// ctor in case of particle going to daughter particles of same mass

2 RooRelBreitWignerAmplitude(const char *name , const char *title , RooAbsReal←↩
& _m, RooAbsReal& _m0 , RooAbsReal& _gamma , RooAbsReal& _mDaughters , ←↩
Int_t _spin , Bool_t _square = kFALSE , Double_t _R = 3) ;

B.2 RooPhaseSpace

RooPhaseSpace(const char *name , const char *title ,

2 RooAbsRealLValue& _mAB2 , RooAbsRealLValue& _mBC2 ,

RooAbsReal& _mMother , RooAbsReal& _mA ,

4 RooAbsReal& _mB , RooAbsReal& _mC ,

Double_t _RMother = 3);

B.3 RooRelBreitWignerAmplitude with Dalitz Analysis

RooRelBreitWignerAmplitude has additional constructiors for when the
function is used in Dalitz. The following two constructors match those de-
scribed above for the case without Dalitz analysis, but accept additional
arguments necessary for the calculation of the Blatt-Weisskopf factor.

1 // Does also the calculation of the RooBlattWeisskopf in case of Dalitz ←↩
analysis

RooRelBreitWignerAmplitude(const char *name , const char *title , RooAbsReal←↩
& _m, RooAbsReal& _m0 , RooAbsReal& _gamma , RooAbsReal& _mA , RooAbsReal←↩
& _mB , RooAbsReal& _mMother , RooAbsReal& _mOther , Int_t _spin , Bool_t ←↩
_square = kFALSE , Double_t _R = 3, Double_t _RMother = 3) ;

3

// Does also the calculation of the RooBlattWeisskopf in case of Dalitz ←↩
analysis

5 RooRelBreitWignerAmplitude(const char *name , const char *title , RooAbsReal←↩
& _m, RooAbsReal& _m0 , RooAbsReal& _gamma , RooAbsReal& _mDaughters , ←↩
RooAbsReal& _mMother , RooAbsReal& _mOther , Int_t _spin , Bool_t _square←↩
= kFALSE , Double_t _R = 3, Double_t _RMother = 3) ;

An additional constructor accepts an object of type RooPhaseSpace and
does not require the user to input the particle masses.

22

1 // retrieve informations from the phase -space

RooRelBreitWignerAmplitude(const char *name , const char *title , ←↩
RooAbsReal& _m , RooAbsReal& _m0 , RooAbsReal& _gamma , RooPhaseSpace& ←↩
phsp , Int_t _spin = 0, Double_t _R = 3);

B.4 RooAngularDistribution

RooAngularDistribution(const char *name , const char *title ,

2 RooAbsReal& _mAB2 , RooAbsReal& _mBC2 ,

RooAbsReal& _mMother , RooAbsReal& _mA ,

4 RooAbsReal& _mB , RooAbsReal& _mC ,

Int_t _spin , Int_t order = 0); // order 0 means taking AB ←↩
as reference

6 RooAngularDistribution(const char *name , const char *title ,

RooAbsReal& _m2 , RooAbsReal& _mOtherRes2); // spin -0

8

RooAngularDistribution(const char *name , const char *title ,

10 RooAbsReal& _m2 , RooPhaseSpace& phsp , Int_t _spin = 0);

B.5 RooAngularAmplitude

RooAngularAmplitude(const char *name , const char *title ,

2 RooAbsAngular& _angularTerm , RooBlattWeisskopf& _B ,

RooAbsAmplitude& _massTerm) ;

4 RooAngularAmplitude(const char *name , const char *title ,

RooAbsAngular& _angularTerm ,

6 RooAbsAmplitude& _massTerm) ;

23

